
Generalized Sequences with Applications to 
the Discrete Calculus 

By J. F. Traub 

1. Introduction. Mikusitiski [17] has introduced a theory of generalized func- 
tions which is algebraic in nature. Generalized functions are introduced in a way 
which is analogous to the extension of the concept of number from integers to 
rational. 

In this paper, an analogous theory of "generalized sequences" is constructed 
for the discrete calculus. This theory serves a dual purpose. It provides a rigorous 
foundation for an operational calculus and provides a powerful formalismn for the 
solution of discrete problems. 

The algebraic formalism of generalized sequences is given in Sections 2 and 3, 
while the relations between such operators as E, A, M, A-', M-' and certain gener- 
alized sequences are discussed in Sections 4 and 8. Newton's interpolation formula 
with a summation remainder, which is analogous to Taylor's formula with an in- 
tegral remainder, is obtained in Section 6. A general solution of the nth-order 
inhomogeneous difference equation with constant coefficients is given in Section 7, 
in connection with which the reader is referred to the discussion of partial fraction 
expansions in Appendix A. The discrete analogues of Heaviside's unit step function 
and Dirac's delta function occur in a natural way and are discussed in Sections 9 
and 10. 

The relation between generalized sequences and such "classical" operational 
methods as generating functions, Dirichlet transforms, and z-transforms is dis- 
cussed in Section 12. Automation of the solution of various types of linear problems 
is discussed in Appendix B. 

A few words on the use of the term "discrete calculus" are in order. A more 
complete title might be "real functions of a discrete variable." This subject is 
usually referred to as the "calculus of finite differences." However, the basic operator 
of this calculus is the translation operator and not the difference operator. Moreover, 
the word finite has various meanings. It sometimes means noninfinite, sometimes 
nonzero, and sometimes noninfinitesimal. In the present context it refers to non- 
infinitesimal and is a relic from the days of the "infinitesimal calculus." 

Hence we refer to the subject as the discrete (as opposed to continuous) cal- 
culus. We restrict ourselves to the case where the discrete variable takes on equally 
spaced values on a half-line. It is sufficient to consider the case where these values 
are the nonnegative integers and we therefore deal with sequences. 

2. The Field of Generalized Sequences. Let S be a set of sequences. Let 
If} E S. Then 

If) = f(0), f(1), f(2), 

(This notation is used instead of fo, f, ,f2 to emphasize that we are dealing with a 
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function of a discrete variable and to avoid the use of subscripts.) When there is 
no danger of confusion, we write {f} as f. The notation f(X) is also used. 

Two sequences are equal if 

f(X) = g(X), X = O 1,2, 

Addition of sequences is coniponentwise. Thus 

h = f + g 

if 

h(X) = f(X) + g(X), X 0, 1; 2, 

Multiplication of two sequences is defined as their convolution. Thus 

h = fg 

if 

h(X) - Ef(j)g(X - j). 
j=0 

Concatenation of two sequences denotes their multiplication as defined above. 
To indicate componentwise multiplication we use a dot. Thus 

h = f g 

if 

h(X) = f(X)g(X), X = 0, 1, 2, *** 

Our use of componentwise multiplication will be rare. 
It is easy to verify that if f, g, h G S, then 
1. f + 9 = 9 + f. 
2.f+ (g+h) = (f+g) +h. 
3. f + x = g has a unique solution x E S. 
4. fg = gf. 
5. f(gh) = (fg)h. 
6.f(g + h) = fg + fh. 

Hence we have a commutative ring. The additive identity is 0, 0, 0, * . . The 
multiplicative identity is 1, 0, 0, * * * . We now show that our commutative ring 
is an integral domain by verifying that if fg = {0), f $ {O}, then g = {O}. Thus, 
by hypothesis, 

f(j)g(X - j) = {0to j=0 

Assume f(0) $ 0. Then by successively setting X = 0, 1, 2, * * , we calculate 
g(O), 9(l), g(2), * * , to be zero. 

Now assume f(0) = 0. Since f is not the zero sequence, there is a first element 
f(m) $ 0. Therefore 

Ef(j)g(x - j) = {01. 
jm 
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Then by successively setting X = m, m + 1, m + 2, *.. , we calculate q(0), 
g(1), g(2), ... , to be zero. Hence the result is proved. 

In the continuous case, the analogous theorem, due to Titchmarsh, is highly 
nontrivial. 

Our ring is an integral domain and may therefore be embedded in a field. This 
embedding is analogous to the embedding of the integral domain of integers in the 
field of rational numbers. 

For given f and g, there may or may not be a sequence x such that g = fx. 
We define the fraction g/f, f = {1} as the solution of g = fx. The symbol g/f de- 
notes the inverse to convolution. The solution is uniquely determined. For, let 
q = fX1, g=fx2, f 0 {0}. Then {0} = f(x1 -x2) and Xl-X2-= 10. 

We call the equivalence class of fractions g/f generalized sequences. We shall 
sometimes call them operators. Every sequence f may be written as a generalized 
sequence fj/g, but not every generalized sequence is a sequence. A subset of the 
field of generalized sequences is isomorphic to the ring of sequences. The scope 
of generalized sequences is treated in Section 11. 

Let f, h 0 {0}. Equality, addition, and multiplication are defined by 

eqg - if and only if eh =fO, 

e _ eg 
f h fh' 

e + _ eh + fig 
f h fh 

Scalars are sequences of the form [a] a, 0,0 .* . Observe that 

(2.1) [a] + [b] = [a + b]. 

[a][b]= [ab]. 

Scalars should not be confused with constant sequences 

la} = a, a, a, ... 

For constant sequences, we have 

{a})b} = ab, 2ab, 3ab, ... 

rather than (2.1). Scalars are isomorphic to numbers. Let a- denote the sequence 

a- = 1, 1, 1, ... 

If { a} is a constant sequence, then the scalar [a] may be written as 

[a] = {a} 

Two important scalars were introduced above. They are 

[1] = 1 0, 0, ... 

Ill]= 1, 0,0,.. 
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Observe that [0] {O}. Since scalars are isomorphic to numbers we write [01 
and [1] as 0 and 1. 

3. The Sequence a. Let w denote the sequence 

X = 0, 1, 0, 0, * . 

The sequence Ad (where the power denotes a j-fold convolution) is the sequence 
with a 1 in the jth position and 0 elsewhere. We define w = 1. 

The sequence 

0- = 1, 1, 1, *. 

was introduced in Section 2. Another important sequence is 

v - 1,-1, 1, -1, .. 

The relation of w, a-, v to the operators E-1, A-', M-1 of the discrete calculus is given 
in Sections 4 and 8. Inverses to w, a, v are defined by 

wr = 1, 

(3.1) ap= 1, 

VPA= 1. 

Direct calculation shows that p and M are sequences given by 

p= 1, -1, 0,0, . 

A 1,1, 0, 0, o.. 

On the other hand, r is not a sequence. It is a generalized sequence. The basic sequences 
are summarized in Table 1. 

Observe that 

(3.2) p 

i = 1 + C. 

Using (3.1) and (3.2), any of the six operators w, o, P, T, p, or ,u may be expressed 
in terms of any of the other five. We elect to express these operators in terms of cw. 

TABLE 1 

The Basic Sequences 

Symbol Sequence 

0 0, 00, * * D 
1 1,,,O. O.**D 

a- 1, 1, 1, 0 
p 1, -1, 01, 01, 
P 1,1, I O. 

y 1, 1,~~~I,0, 0,o0 
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Thus 

1 
1 -C) 

1 + Co 
(3.3) 1 

p = 1 -CD 

y = 1 + . 

Observe that if f is an arbitrary sequence (not a generalized sequence), then the 
sequence may be exhibited in terms of its members through 

(3.4) f EZf(j)Wj. 
i-o 

This important relation is used in Sections 11 and 12. 
Direct calculation shows that the sequence 1, -a, 0, 0, is the inverse of 

the sequence 1, a, a2, . The sequence 1, -a, 0, 0, * X may be written as 1- 

aw where a is a scalar. Since 1, a, a2, . . . is the sequence a", we have 

a" (1 a- ) = 

or 

1-a -aw' 

By convolution, 

1 -aw 1 -ao (1 -aw )2- j=O 

Therefore, 

(1 -aw)2 (X+1)a. 

By induction, 

(1-3a)m+l- C(X + in, m)a 

where C(X, in) denotes the binomial coefficient 

1 rn-I 

C(X)in) WJI (X -i). 
m.I i-O 

Observe that if f is an arbitrary sequence, then 

'f(X) f(X j), X _j 

(3.6) -0, X < j. 
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In particular, 
m 

(3.7) CW 
= 

(1 - aw)m+l 

and 
m 

(3.8) (1 =C(X2m). 

Since C(X, m) = 0 for X and m nonnegative integers and X < m, we need not write 
these relations for two cases as in (3.6). 

Observe that in (3.7), m is fixed and the sequence is indexed by X, the first 
parameter of the binomial coefficient. Consider now the sequence 

1, a, 0,0,** =1 + a. 

By convolution, 

(1 + aw)2 = 1 + 2aw +a22 = C(2, X)a", 

and by induction, 

(3.9) (1 + a) = C(m, X)a . 

Observe the similarity between (3.9) and the identity 

(1 + at)t = E C(m, X)alte. 

We return to this in Section 12. 
It is important not to confuse (3.7) and (3.8). For each m, the sequence 

tC(X, m)} = C(O, m), C(1, m), C(2, m), ... 

has an infinite number of nonzero elements. On the other hand, only the first m + 1 
members of the sequence 

tC(m, X)} = C(m, 0), C(m, 1), C(m, 2), ... 

are nonzero. For example, 

J C(X23)) = (1X 1)(X 2)} 02o 02 0, 1, 4, 10,.** 

C(32)} I= 1,3,3,1,0,0,0,2 0 

Formulas relating tC(X, m)} and tC(m, X)j are derived in Section 9. 
We turn to the case where a is complex. Let a = Re". Then 

m 

(1 - aw)m+l - C(X, m)at' 

becomes 
m 

(3.10) = C(X, m)R-mei(X-m)fP. 
(1 - Reip~w)m+l 
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The left side of (3.10) may be written as 
m+1 

(3.11) Xm (1 - ReiX)m~l m jE (-1)kC(m + 1, k)RIkeikpWk 

(1 - Reisc@)m+l (1 -Re-ivw)m+l (1 - 2Rw cos 'p + R2w2)m+lI 

Taking real and imaginary parts of (3.10) and (3.11) leads to 
m+1 

cmj (-1)kC(f + 1, k)R kX cos kin (3.12) 
C(X, mn)Rk cos (X - m)> = k=O 

(1I 2Rw cos 'p + R 2W2)mn+I 

m+1 Z E (_1 )k-lC(m + 1 k)R"kf sin k'p 
(3.13) C(X, m)R-m sin (X - m)'p k=-O 

(1 - 2Rw cos 'p + R 2.2)mn+ 

In particular, 

(3.14) Rx cos Xis = 1 - Rw cos 'p 
1- 2Rw cos'p + R 2W2 

(3.15) Rx sin Xis = 1- Rw sin 'p 
1-2Rw cos 'p + R 2W2 

(3.16) Rx cos 2X . = 1+2R2w' 

(3.17) Rx cos 2X= - = 
2C2 2 1 +R~w 

From (3.14) and (3.15), we may conclude that 

(3.18) R-sinp(X + 1) _ 1 
sin o 1 - 2Rw cos 'p + R2W2X 

and from (3.6), 

(3.19) R"-l 
sin spX _ 

sin(.9 1 - 2Rf cos 'p + R2W2' 

Using (3.1) and (3.2), these formulas may be written in terms of a, T, etc. 
Thus w = 1/T and (3.17) imply 

(3.20) Rx sinr X Rr 
2R2 +rT2 

We restrict ourselves to m a nonnegative integer in formulas such as 
m 

(1 - aw)m~l - C(X, n)a\-m. 

This formula could be extended to noninteger m but we shall not do so here. 

4. The Operators of the Discrete Calculus: E, A, Ml. The standard operators 
of the discrete calculus have certain desirable algebraic properties. They lack certain 
other properties such as the possession of inverses. (The so-called inverse operators 
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are not true inverses.) On the other hand, the operators introduced in Section 3 are 
members of a field. As we shall show in this section, there are simple relations be- 
tween the two sets of operators. Hence to solve a problem in the discrete calculus, 
we translate into a problem involving generalized sequences, solve, and then trans- 
late back. 

Three standard operators of the discrete calculus are defined by 

Ef(X) = f(X + 1), 

(4.1) Af(X) = f(X + 1) - f W 

Mf(X) = 1[f(X + 1) + fA . 

E, A, and M are called the translation, forward difference, and mean operator, 
respectively. The operators &-' and M-1 are introduced in Section 8. Observe that 
Ef is not a convolution. The operator E has no meaning in itself, but only in its effect 
on f. It is easy to verify that there exists no sequence K, independent of f, such that 

Kf(X) = f(X + 1) - f(X), 

where Kf is a convolution. 
Multiply 

Ef(X) = f(X + 1) 

by w and recall that 

wf(X) = f(X - 1), X>1 

=0, X=0. 

Hence 

(4.2) wEf = f-f(0). 

(To understand sequence relations such as (4.2), the reader should recall that the 
scalar f(0) is the sequence f(0), 0, 0, * . . .) Since Tw = 1, we conclude that 

(4.3) Ef= rf - Tf(0), 

or 

(4.4) Ef = f- -f(0). 
CI) @I 

Hence the generalized sequence T is related to the translation operator. Also, 

Af = (T - )f - 'rf(0), 

or 

(4.5) Af = prf - rf(0), 

where p is the sequence 
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Hence the sequence p is related to the forward difference operator. Furthermore 

(4.6) Mf =2rf - 2 (O) 
2 2 

Hence ,/2 is related to the mean operator. 
Equations (4.4) to (4.6) are of the form 

(4.7) Lf = af - flf(0), 

where L is an operator of the discrete calculus and a and ,3 are generalized sequences, 
Replace f by Lf in (4.7). Then 

L2f = a[oaf - #f(0) I-fLf(O) 

= a2f - a/3f(O) -3Lf(O). 

By induction, 
n-1 

(4.8) L nf = a nf _ Ea -Ad L'-f(O) 
j=o 

In particular, 
n-1 

(4.9) Enf = rf - _ E fj) 
j=O 

n-1 

(4.10) A7f = pTf - T E (pr)n'i\ f(O), 
j=o 

M nf =- 7 r 
-- 

(4.11) Mnf = )T nf - 2 Eif (?) 

These relations show that the operators of the discrete calculus and certain of 
our generalized sequences differ only by terms involving "initial conditions." In 
Section 6, we demonstrate that (4.10) is essentially Newton's interpolation for- 
mnula with remainder. 

Although generalized sequences commute and many operators of the discrete 
calculus commute, the two families of operators do not commute with each other. 
Thus 

(pE - Ep)f = f(O). 

5. The Summation Sequence a. We defined 

0f 1, 1, 12 * 

Hence 

off f(j). 
j-o 

Since 

1 m 1 
af- 1-c,'w a- 
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From (3.5), 

(1 - 
)m = C(X + m -1, m - 1). 

Since a'f may be interpreted as an m-fold sum or as the convolution of the sequence 
am with the sequence f, we conclude that 

X i32 il X 

(5.1) E... E f(jo) = C(X + mr -1-c,m -)f(k). 
jn-1=O jlto j1=O .=O 

This is the analogue of Cauchy's formula 

(5.2) t dtm-i tf dt, t f(to) At= t (n-i)M!1 f(u) du. 

Numerous expressions for sums of binomial coefficients may be derived by using 
algebraic identities in a. We give only a few examples here. See also Section 9. 
Thus, 

1 --co, 

and (3.9) lead to the identity in X, 

E (-1) jC(m, j) (-1)'C(m-1, X). i=o 
Also, 

(1 + W)k(1 + W), = (1 + W)k+m 

and (3.9) lead to 

Qi C(k, j)C(m, X - j) = C(k + m, X). 
j=0 

This is the well-known Vandermonde convolution. From 
k m k+M 

(1 - W)k+ (1 - )m+l (1 -)k+m+2 

we obtain 

,C(j, k)C(X -j, m) = C(X + 1, k + m + 1). 

If in=0, 

j=o 

Convolution with 1/(1 - a) leads to summation. Convolution with 1/(1 + W) 
leads to summation of alternate sequences. Thus the identity 

1 co) 1 1 a 1 1 
1 +CX (1-_ L))2(a +1) 1 +@(aL)2 1-a + IaA) 
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leads, after some simplification, to 

A~~~~~~~ 
(-l)jjaj ' = (a + 1) {- + (-a)"[1 + X(a + 1)]}. 

6. Newton's Interpolation Formula. Newton's interpolation formula is the 
discrete analogue of Taylor's formula. Taylor's formula with integral remainder 
is given by 

(6.1) f(t) = en f (!O) tj + f (t du. 
j=o y. j n ! 

The derivative form of the remainder may be obtained from the integral form by 
the second law of the mean. On the other hand, Newton's interpolation formula 
is invariably given with a derivative remainder. We shall obtain the analogue of 
(6.1) for Newton's formula with a summation remainder replacing the integral 
remainder. From this we obtain the derivative form of the remainder. 

We showed in Section 4 that 
n-1 

Anf _ p~f - 
_ f (par)n itf(O). 

j=o 

Solving for f, and using p- 1- r 1w, 
n i 

( 
\ n+1 

(6.2) ~~f = 2: "' A'( )+ An+lf. (6.2) f 0 i fj=O (1 - o)i ) co 

This is Newton's formula with the remainder expressed as a convolution. Using 
(3.6) and (3.8), we can write (6.2) as 

(6.3) f(X) = Pn(X) + Rn(X), 

where 
n 

Pn (X) = E C(X, j),Af(O), 
j=O 
A-1 

Rn(X) = E C(X - 1 - j, n)'A +f(j). 
j=O 

Observe that the remainder differs from the integral form of the remainder of 
Taylor's formula in exactly the fashion that (5.1) differs from (5.2). This must be 
the case since Taylor's formula is an identity due to repeated integration by parts 
whereas Newton's formula is an identity due to repeated summation by parts. 
Observe that (6.3) is valid with no regularity assumptions. 

If An+f (j) is independent of j, then 
A-1 

Rn (X) = an~lf(0) C(X - 1 - j, n), 
j=O 

and, using (5.3), 

Rn (X) _ A n+f(0)C(X, n + 1). 

Hence, for this case, 
n+1 

fE C= EC(Xj)zjf(O). 
j=O 
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We return to the general case. Note that Rn(X) = 0 for X 0, 1, *I* , n. Let 

aj(X -) C(X -1 -j, n) X > n. 
- CX, n+ 1) X n 

Then 

aj()X, n) _ O. 0-O 1, * *, X1; 

(6.4) 
~aj(X, n) =1 

We can write the remainder as 

(6.5) Rn(N) = C(X, n + 1) I, aj(X, n)A+'f(j). 
i=O 

Thus the remainder is the product of a polynomial in X of degree n + 1 with a 
weighted average of (n + 1)st differences. 

This result. has been obtained without a regularity hypothesis. It is an identity 
in X valid for nonnegative integer X. We extend the result to arbitrary X and obtain 
the usual derivative form of the remainder as follows. 

Let f denote a function of a real variable and let f(n+l) exist. Then, for some t, 

Analf(j) = f(n+l) (em). 

Hence 
X-1 

Rn(X) = C(X, n + 1) aj((X, n)f(n+l)((). 

The sum is a weighted average of (n + 1)st derivatives. By the intermediate- 
value property of derivatives, there exists a point 0 such that 

(6.6) R,(X) = C(X, n + 1)f(n+l)(o). 

(Note that continuity of the (n + 1)st derivative is not required. Existence of the 
derivative implies the intermediate-value property.) 

Hence 
n 

(6.7) f(X) = E C(Xj)A'f(O) + C(X, n + 1)f (nO)(0). 
j=O 

This formula is valid for arbitrary X. 

7. Solution of Difference Equations. The nth-order linear difference equation 
with constant coefficients may be written as 

(7.1) f(X + n) + alf(X + n-1) + *+ r anf(X) = g(X) 

or 
n 

EI an-jEjf = g, ao 1. 

The coefficients can be real or complex. If f(0), f(1), -, f(n - 1) are specified, 
the solution is uniquely determined for all X. Equation (7.1) might better be called 
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a recurrence relation; the term difference equation is used for historical reasons. 
The polynomial E7=0 acnt' is called the characteristic polynomial and the equa- 
tion 

n 
(7.2) E a 0-itj=O 

jio 

is called the characteristic or indicial equation. The roots of the equation 
n 

(7.3) aojt' 0 
j=0 

are the reciprocals of the roots of (7.2). The sequence g is sometimes called the 
forcing sequence. 

We begin by considering the first-order equation 

(7.4) (E + al)f = g. 

From (4.4), 

Ef=f --f(O). 
Cl C) 

Hence 

f = (0) + g. 

Therefore, 

(7.5) = f(O) + 1 g 
1 + aiCw 1 + 1co 

From (3.5) and (3.6), 
X-1 

(7.6) f(X) = f(0) (-a,) + E (-aj)X'1 j(j). 
j=o0 

This analysis exhibits a number of features which hold true in the nth-order 
case. The particular solution is expressed as a convolution. As we shall see below, 
the form of g may be such that we can evaluate this convolution without writing 
it as a sum. It is not necessary to obtain the general solution of the homogeneous 
equation plus a particular solution of the inhomogeneous equation and then to fit 
initial conditions. This is all done in one step. The dependence of the solution on 
the initial conditions is explicitly obtained. 

We turn to the second-order equation 

(E2 + a1E + a2)f = 9. 

Using 

Ef = - J-2 2f() -A-f(1), E = f f(O) 

we find that 

(77> Jo f(AO (1 + cell) + fAl)o +2cg 
(7.7) f= + + f122 f()1 + aiCO + a2+ aCw+ 
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Let the zeros of the characteristic polynomial co2 + aico + a2 be Pi and P2 with 
PI F P2. The partial fraction expansion (see Appendix A) of (7.7) leads to 

AX) = 1 [G(X) + S(X)], p2 - P ? 

G(X) = f(0)[P2"+l - pl + al(P2 - )] + f(l)[P211 - pill] 

=- f(0)[P2 - PP2] + f(1)[PA - 
PAX] 

X-1 

SM\ = E 9(i) (P2' -jPIA-) 
j=0 

Let the characteristic polynomial have a double root at P1. Vsing 

(1 - Pico)2 (x + l)px, 

it is easy to show that 
X-2 

f(X) = Pill{f(0)[pi(1 - X)] + f(1)X} + E (X - 1 - j)p piX2fig(j) 

The same result may be obtained from (7.8) by calculating the limit as P2 -- P1. 

Observe that Pi and P2 are, in general, complex. If the coefficients and the starting 
values are real, the solution is real for all X. In the form of the solution given by 
(7.8) it is not clear that f is real. We give an example below to show that all cal- 
culations may be done over the reals. 

We turn to the nth-order equation 
n 
E an-Ejf = g ao = 1. 
j=o 

Using (4.9), 
j-l 

Ef =Tf - E Tkf(k), 
k=O 

n n i-1 

Ej >n-jTf = E a(nj E 
j 

Tkf(k) + g. 
j=O j=O k=O 

Interchanging the order of summation and setting T = 1i/c, we find 
n n-1 n-1-k 

E ajjf = E o'@f(k) F, ajcoj + n9g. 
j=O k=O j=O 

Let 
r 

(7.9) Pr(W) = E a:jw . 
j=o 

Then the general solution may be written simply as 
n-1 
ZE C kPn-l-k ( O)f(k) n (7.10) f k==O + co g 

Pn(CO) Pn(CO) 
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Assume that the roots of the characteristic polynomial are distinct. Let 
r 

(7.11) Cr(w) -E Za-jw. 
j=O 

A calculation shows that 

Pn-k( () 
- 

E 

Pn(w) =1 1 - Piw 

Pn-l-k 

Ai = p 1-k \Pi/ Cn-I-k(pi) 

Pn' (n';) 

Furthermore, 
n-1 n Bi 

Pn(W) i=1 P- 

2-n 

fTj __ 1 

pn 
/ 1 Cn (Pi)' 

Therefore, 
n-1 n ? -1 n X-i-k 

(7.12) f(X) = E f(k) E C-l-k(Pi)P + (k) E Pi 
k=0 i=l Cn (pi) k=O i-1 Cn (Pi) 

or 
n 1 n-1 X-1 n X-l-k 

(7.13) f(x) = E Pi 1 Z Cn-l-k(pi)f(k) + E g(k) Z Pi 
i=l Cn'(pt) k=O k=0 i=1 Cn'(Pi) 

It follows from (7.11) that 

(7.14) Cr+i(w) = ACr(w) + a,+ I 
Assume that pi is real. For pi fixed, all the Cn-l-k(Pi) may be obtained by synthetic 
division with about n multiplications. Using the Cn-l-k(Pi), Cn(p,) may also be 
obtained by synthetic division. (For material on synthetic division, the reader is 
referred to Kunz [15, pp. 19-21].) 

We turn to some examples. The first example shows how all calculations may 
be done over the reals. Given 

(E2 + 2E + 4)f = 0, 

the solution is 

f(O) (1 + 2w) + f(1) w 
f 1 +2w+4 W2 

Writing 1 + 2w = 1 + w + w and using (3.14) and (3.15), or using (3.18) and 
(3.19), we obtain 

f(X) - 2' ff(o) (cos2 WX + V3 sin 2 rX) + f(l) 3 sin 22 rx]. 
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To illustrate the importance of distinguishing between constant sequences and 
scalars, we consider 

(E2 - 3E + 2)f= 1, f(O) = O, f(1) =O. 

The right side of this equation is the constant sequence consisting of ones. The 
solution is 

2 
1 

2 

1 - 3w + 2w2 I - wx) (1- 2w)(1 -)) 

Since 
2 1 1 

(1- 2)(1 -)2 1 -2w (Il- w)2' 

f(X) = -X -1. 

As our last example, we consider 

(E2 _ 1)f !, f(O) = 0, f(5) = 1. 

Then 

f(O) + f(1)w 
2 

o 1 - co2 + 1 --w2 

and 
X-1 

f() f(1)[1 - (-1)X + 2E [1 (-1)11 1 jjj!. 

Since 

f(5) = 1 = f(1) + 7, 
*X-1 

f(X) - -3[1 - (-1)X] + 2 [1 - 
i=o 

8. Inverse Operators of the Discrete Calculus: A-', M-1. We define ,A'f to be 
the solution of the first-order equation 

Af= f.r 

Clearly, A-lf is determined only up to an arbitrary constant. Despite the sym- 
bolism in common usage, A-1 does not commute with A. It plays only a secondary 
role in the theory of generalized sequences just as indefinite integration plays only a 
secondary role in Mikusin'ski's theory. 

From (7.5), 

(8.1) \-lf _ A-f(O) + f = U-'f(0) + wof, 18.1 A-1 = 
- c 1 - W 

where /v71f(O) is just an arbitrary constant. Hence 
X-1 

(8.2) A- f(X) = (1)x&-lf(o) + Ef(&), 
j=1 
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where (1)X serves to remind us that this constant is added in for each X. 
We define M-'f as the solution of 

AlIso = f. 

Hence 

(8.3) M'f- A f() + P=vM f(0) + 2wvf, 

or, 
X-1 

M if= (-1))M-f(0) + 2 E (-1)x)-'-f(j). 

Thus M-' is related to the operator P. Observe that whereas M and M-' are not 
inverses, v and jA are inverses. For material on A-' and M-', the reader is referred 
to Jordan [13, Chapter III]. 

As an example, we calculate 

M-'a = C 
+ 2wo 1 

1 + co + l + l-aw 

=C(-1)X + 2 a. 
a + 

9. Heaviside and Dirac Sequences. Let 

'y(X,j) =1 , X > j) 

(y (X,j) =0, X < j. 

Let 

5(X,ji) - 1, X = j 
(9.2) 

j) 
S(X\j) 02 0j- 

The sequence -y (X, j) is the sequence analogue of a unit step function. We call it a 
Heaviside sequence. The sequence 5(X, j) is the sequence analogue of an impulse 
or delta function. We call it a Dirac sequence. We shall show that p operating on 
y (X, j) yields a(X, j) in analogy to the continuous case where the derivative of the 
Heaviside function is the Dirac function. BS(X, j) is often called a Kronecker symbol. 

Observe that 

(9.3) (X,= 1- 

(9.4) 5(Xj) = xi. 

In particular, 

Y(x 0) =1- 

6(X, 0) = 1. 
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Since p = 1 - w, the identity 

(9.5) (1- )W -A' 
1-w 

implies 

(9.6) Py(X, j) (, j). 

Therefore 

(9.7) Y(X, j) = 6(X, j). 

Using (9.4) and (9.7), we observe that 
00 

f- Ef(i)W' 
j=O 

implies 
00 

uf -E f(j)(Xj ). j-=o 
Certain algebraic identities in w lead to interesting results. From 

j 

Wk1 -W 

we conclude that 

pk+l y(Xj) ={ (-1)xC(k, X)}{b(Xj)}. 

From 

1 i -k Wb 1 ____ ~= ,..O 

W1-()k - W - (4)k(l) 

k-(X 
= 

j) WjkC(x, k). 

Therefore 

" t(', j) = T p C(X, k). 

In a similar manner we can obtain relations between C(X, k) and C(k, X), with 
k fixed. -From 

k k 
wwk 

( 1 - ?W)k+= (1 - w)2k+1 (1 - ) 

we obtain 

(9.8) C(X, k) = (k 2k+1 )C(k, X). 

Hence C(X, k) is obtained by a (2k + 1)-fold summation of (-l)xC(k, X). 
As an example, let k = 1. Note that 

(-l)C(l, ) = 1, -1,0 ,0 , 

The sum of this sequence is 1, 0, 0, * . The sum of the new sequence is 1, 1, 
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1,.. Again taking the sum we obtain 1, 2, 3, * A A . Applying w to this and using 
(3.6), we obtain 0, 1, 2, * which is just C(X, 1), which is the left side of (9.8) 
for k = 1. 

From (9.8), 

(1 )C(k, X) = r'2k+1C(X, k) 

From the identity 
k 

(1 + 
2k 

_ ( 1 + 
1 

) -k (1 + W)kfl+' 

we obtain 

C(k, X) = 42k+1( _1)xC(, ( k). 

Recall that Au is related to the mean operator. 

10. Difference Equations with Heaviside and Dirac Sequences. Difference 
equations whose forcing term depends on Heaviside or Dirac sequences may now 
be easily handled. For a discussion of such equations using "classical" operator 
methods, the reader is referred to Tauber and Dean [21]. 

Consider the first-order difference equation 

(E - 3)f c 7(X j). 

Then 

f (0) coi f - ... + 

and 

f(X) = f(O)1x + - 1 j). 

The dot in the last term of this equation is used to show that this is not a convolu- 
tion. 

Consider the more general equation 

(E - #)f = (X) '(X, ()X 

Using (7.6), 
X-1-j 

f(X) = f(O)/OX + E Zg (X - 1 - k). 

The next two examples illustrate the treatment of an equation whose forcing 
term contains a Dirac sequence. Let 

(E - )f=(Xj). 
Then 

f(0) +j~ 
f ( -X _ (O+ 

f(x) _f(04, + #"-I-j Y(X) j + 1). 
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The solution of 

(E - j)f g(X) 5(X, j) 

is 

f(AX) = ,xf(O) + X-i-jg (j),y( ,j + 1). 

11. The Scope of Generalized Sequences. Let f and g be sequences and define, 
h by f = gh. If g(O) $ 0, then h is a sequence whose members may be recursively 
calculated by 

f(X) = E h(j)g(X - j). j=0 

Let g # 0. Then there is an element g(i) $ 0. Therefore 
00 00 

9 E g(j)i = gE g(j)w'r. 
j=i i 

Let 

e = g(i), g(i + 1), g(i + 2), ... 

Then g (A e and 

h= f =f. 
g e 

Since e(0) $ 0, f/e is a sequence and 

f 
00 

f = E C(j)wj2 e j=o 

where C(j) is determined from 

f(X) = E C(j)e(X - j). 
j=0 

Then 

f - C(O)c-t + C(1)W-fi+ + 
9 

12. Relation to Other Operational Calculi. Operational calculi date back to 
the time of Leibnitz, Lagrange, and Laplace. A historical survey may be found in 
Davis [7]. Important contributions were made by Boole [3] and Heaviside. (For an 
interesting assessment of Heaviside's work, the-reader is referred to Cooper [6j.) 
Contemporary texts on operational calculi include those of Kaplan [14] and 
Churchill [5]. 

A number of sequence transforms have been studied. These include the Dirichlet 
transform (Fort [11]) 

00 

f(t) = E a(j)st3, 
j=o 
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or (Zypkin [22]) 
00 

f(t) = E a(j)et3; 
j=O 

the z-transform (Kaplan [14, pp. 375-388], Lawden [16]) 
00 

f(z) = E a(j)z-'; 
j-O 

and the generatrix transform (Riordan [20, Chapter 2]) 
00 

f(t) = E a(j)t'. 
j-O 

It is clear that these transforms are closely related. The solution of linear dif- 
ference equations with constant coefficients has been frequently performed by 
operational means. The reader is referred to Boole [3, Chapter XI], Jordan [13, 
Chapter XI], Milne-Thomson [18, Chapter XIII], Mikusifiski [17, pp. 158-165J 
and Erddlyi 19, pp. 70-74]. 

The idea of multiplication defined by convolution is not new. The reader is 
referred to an important paper by Bell [1]. The key to Mikusifiski's work is the 
introduction of an inverse to convolution. Moore [19] defines a convolution algebra 
in order to find formal power series solutions to differential equations. Feldman 
[10] and EliAi [8] solve difference equations. EliA? defines h = fg by 

h(X) = Zf(X-j)g(j-1), X > 0O h(0) = 0. 
j-1 

Berg [2, p. 26] defines h = fg by 
X ~~~~-1 

h(X) = Ef(j)g(x - j) - Ef(j)g(x - 1 -j). 
j=O 

= 

In a paper published in 1950, Frankel [12] discusses a "calculus of figurate 
numbers." Frankel does not seem aware of the fact that his calculus is based on 
the sequences C(X, j) and (-1)C(j, X). 

Thus a number of authors have written on convolution algebras with applica- 
tions to specific problems. The systematic application of such an algebra to a wide 
variety of problems in the discrete calculus is the contribution of this paper. 

We now investigate the relation between generalized sequences and generating 
functions. From (3.4), any sequence may be written as 

00 

(12.1 ) f E f(j),(2. 
j=0 

To the sequence with elements f(j) we may assign the generating function 
00 

(12.2) f(t) = E>f(j)t'. 
j=0 

Note that (12.1) is an identity which follows from the definition of the sequence 
c. It is simply a way of exhibiting the sequence in terms of its members and is 
always true. There can be no question of convergence. Equation (12.2) defines a 
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mapping from a sequence to a function of a real variable. There is an obvious 801- 

morphism between the two systems. 
The conceptual difference between generating functions and generalized se- 

quences may be illustrated by the following example. The generating function 
of the sequence 1, a, a2, *. is 1/(1 - at) because 

00 

a (at)= 1 
j=0 1- at 

On the other hand, 

1 - 1,a,a2,@ 
1-aw 

by the definition of fraction in our convolution algebra and by the definition of W. 
In the calculus of generalized sequences the formula for the coefficients of a 

product polynomial in terms of the coefficients of its factors is built into the system. 
In a sense, generalized sequences are to generating functions as the method of de- 
tached coefficients (synthetic division) is to polynomial division. On the other 
hand, the relations discovered during almost two hundred years of experience with 
generating functions may be used in the theory of generalized sequences because 
of the isomorphism. 

APPENDIX A. On Partial Fraction Expansions. The expansion of rational func- 
tions into partial fractions is too well known to require discussion here. The reader 
may refer to Kaplan [14, pp. 158-160]. The object of this appendix is to point out 
a simplification in the calculation of the coefficients. 

Let P(x)/Q(x) be a proper rational function, and let Q(x) have a zero a of 
degree p. Let 

(A.1) s(z) = (x - P(x) 

Then 
P(x) B 

+ B2 + + _ p + _()_ 
Q xx = - a (x - a) (x- ) 

where 

(A.2) Bpj = j(0, 1,**@,p-1, 

and where X (x) is a partial fraction expansion determined by the other zeros of 
Q(x). From (A.1) and (A.2), it appears that the coefficients in the expansion of 
P(x)/Q(x) require the differentiation of a quotient which depends on P(x) and 
Q(x). We shall demonstrate that if the coefficients in the expansion of 1/Q(x) are 
A3, then the Bj are linear combinations of the Ai with coefficients depending on 
P(x) only. 

The proof is simple. Let 

1- x-, +Al A2 + + _p 
+ + 

Q(X) x x- a (x - a)2 ( T 



GENERALIZED SEQUENCES WITH APPLICATIONS TO THE DISCRETE CALCULUS 199 

where 

A p-j = Vj(a) v) (X - 
a). 

j! V(X) ~Q(X) 

Since 

p (x) = (X) v x, 
j 

<p(j) (X) = E C(j) k) P'_' (x) v~k (x), 
k=O 

and 

(A.3) B j= A pv, (i-o), )1 p 

Equation (A.3) is the required relation. 
Partial fraction expansions occur in the solution of difference equations. In 

this case, Q(x) is determined only by the coefficients of the homogeneous equation, 
and P(x) is determined only by the initial conditions and the forcing term. Because 
of (A.3), the expansion due to the homogeneous equation may be determined and 
the initial conditions and the forcing term may then be varied without requiring 
the recalculation of the expansion coefficients from scratch. 

APPENDIX B. Automation of Operator Calculus. The solution of a problem with 
the aid of an operational calculus bears a resemblance to the process of solving a 
problem on a computer. First there is a translation phase. For a problem where an 
operational calculus is used this is typically a translation from an analytic to an 
algebraic problem. For a computer problem, this is the translation of, say, a mathe- 
matical formulation in the language of FORTRAN into machine language. Then the 
problem is solved. Finally, an inverse translation is needed to make the results 
available. For the operational calculus, this involves the application of inverse 
transforms. For a computer problem this might mean binary-to-decimal conversion 
or conversion to CRT output. 

One advantage of an operational calculus lies in the fact that results may be 
obtained in a mechanical or "cookbook" fashion. This suggests that certain classes 
of problems could conveniently be solved on computers with an operational calculus 
providing a natural symbolism. Tables of transforms and inverse transforms would 
perform the functions of "syntax tables" in compilers. To change from, say, a 
calculus for difference equations to one for differential equations, it is only necessary 
to change these tables. 

The computer can also function as a repository of knowledge. For this purpose 
an operational calculus plays a natural role since the contents of certain parts of 
mathematics may be summarized in the algebraic structure of appropriate operators 
and in the transform tables. 

Some work on symbolic manipulation on digital computers has already been 
done. A noteworthy example is Brown's [4] ALPAK program which performs sym- 
bolic manipulation on rational functions of several variables. The symbolic solution 
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of various types of linear systems seems a particularly suitable candidate for 
automation. 
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